Deviance information criterion for latent variable models and misspecified models
نویسندگان
چکیده
منابع مشابه
Robust Deviance Information Criterion for Latent Variable Models∗
It is shown in this paper that the data augmentation technique undermines the theoretical underpinnings of the deviance information criterion (DIC), a widely used information criterion for Bayesian model comparison, although it facilitates parameter estimation for latent variable models via Markov chain Monte Carlo (MCMC) simulation. Data augmentation makes the likelihood function non-regular a...
متن کاملFast computation of the deviance information criterion for latent variable models
The deviance information criterion (DIC) has been widely used for Bayesian model comparison. However, recent studies have cautioned against the use of the DIC for comparing latent variable models. In particular, the DIC calculated using the conditional likelihood (obtained by conditioning on the latent variables) is found to be inappropriate, whereas the DIC computed using the integrated likeli...
متن کاملDeviance Information Criterion for Comparing Stochastic Volatility Models
Bayesian methods have been ef cient in estimating parameters of stochastic volatility models for analyzing nancial time series. Recent advances made it possible to t stochastic volatility models of increasing complexity, including covariates, leverage effects, jump components, and heavy-tailed distributions.However, a formal model comparison via Bayes factors remains dif cult. The main ob...
متن کاملDeviance Information Criteria for Missing Data Models
The deviance information criterion (DIC) introduced by Spiegelhalter et al. (2002) for model assessment and model comparison is directly inspired by linear and generalised linear models, but it is open to different possible variations in the setting of missing data models, depending in particular on whether or not the missing variables are treated as parameters. In this paper, we reassess the c...
متن کاملLatent Variable Models
A powerful approach to probabilistic modelling involves supplementing a set of observed variables with additional latent, or hidden, variables. By defining a joint distribution over visible and latent variables, the corresponding distribution of the observed variables is then obtained by marginalization. This allows relatively complex distributions to be expressed in terms of more tractable joi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 2020
ISSN: 0304-4076
DOI: 10.1016/j.jeconom.2019.11.002